Alkynylation of Mixed Acetals with Organotin Acetylides

Dongguan Zhai, Weixu Zhai, and Robert M. Williams* ${ }^{\dagger}$
Contribution from the Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523. Received June 29, 1987

Abstract

Reaction of halo acetals containing O, N, or S heteroatoms with tri- n-butyltin acetylides in the presence of ZnCl_{2} in CCl_{4} leads to the formation of α-alkynyl ethers, amines, and sulfides in good yields. The methodology is exemplified with the synthesis of amino acids and C-glycosides.

The utility of activated mixed acetals for the construction of carbon-carbon bonds has recently been receiving widespread attention ${ }^{1-3}$ from various segments of the chemical community. In particular, efforts have been directed at constructing acetals (1) (Scheme I) with an appropriately activatable leaving group for coupling with specific carbon nucleophilic reagents. Furthermore, recent interest in the synthesis and reactions of propargylic ethers and alcohols (Nicholas reaction) ${ }^{4}$ makes the development of new methods to prepare propargyl derivatives of this general type an attractive synthetic objective. In this paper, we report a new organometallic coupling reaction to more traditional mixed halo acetals based on organotin chemistry. We have found that a variety of $\mathrm{O}-, \mathrm{N}$-, and S -centered halo acetals undergo alkynylation with trialkyltin acetylides in the presence of ZnCl_{2} under very mild conditions. The examples below serve to illustrate how this reaction methodology can be used to gain access to unusual amino acids and derivatives, homologated carbohydrate derivatives, and other functionalized alkynes.

Results and Discussion

The bromoglycinate ${ }^{5} 3$ (Scheme II) when treated with 2 equiv of $t r i-n$-butyltin acetylides 4 in the presence of ZnCl_{2} (2 equiv) in CCl_{4} at $25^{\circ} \mathrm{C}$ afforded, after standard workup and silica gel chromatography, the crystalline alkynes $5 \mathrm{a}, \mathrm{b}$ in 55% and 53% yields after recrystallization, respectively. ${ }^{6}$ This reaction proceeded with net retention ${ }^{7}$ of stereochemistry as evidenced by the conversion of $5 \mathrm{a}, \mathrm{b}$ to the corresponding α-amino acids $6 \mathrm{a}, \mathrm{b}$ whose absolute configurations are known. A variety of other metalloalkynes were investigated to effect this coupling, including $\mathrm{R}_{3} \mathrm{SnC} \equiv \mathrm{CR} / \mathrm{Pd}^{08}$ and $\mathrm{RC} \equiv \mathrm{CLi} / \mathrm{ZnCl}_{2},{ }^{9}$ which led to the decomposition of 3 and no detectable products 5 . It was also found that the solvent is crucial for this reaction, no reaction being observed in aprotic solvents such as toluene or $\mathrm{THF} ;{ }^{10} \mathrm{CCl}_{4}$ has proven to be the best solvent for this coupling.

Synthetically useful C-glycosidation of 1 -halo carbohydrates has been accomplished via this methodology as shown below in Scheme III and in Table I. In the glucopyranose series, the couplings displayed significant α selectivity (see Table I). The stereochemistry of the C-glycosylated products was not readily determined by examination of the spin-spin coupling constants for H_{1} and H_{2} in the ${ }^{1} \mathrm{H}$ NMR due to overlapping signals in the region $\delta 4-5.5$, which precluded the assignment of the $\mathrm{C}-1$ methine proton. However, Lindlar reduction of 8 followed by ozonolysis and reduction with NaBH_{4} furnished the α-hydroxymethyl derivative 9. Conservation of 9 to the optically active pentol $10\left(\mathrm{H}_{2}\right.$, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$) and per-O-acetylation (12) or benzylation of 9 (furnishing 11) firmly established the α stereochemistry. If the stereochemistry of 8 was β, the same series of transformations would have furnished optically inactive meso derivatives $\mathbf{1 0 - 1 2}$.

Although a detailed mechanistic study has not been conducted on this reaction, the results are consistent with the hypothetical mechanism depicted in Scheme IV. Transmetalation with Zn^{2+} has been excluded, ${ }^{9}$ so it seems reasonable that the acetylene π system attacks ${ }^{11}$ the cationic species 14 generated from the halo

[^0]Scheme I

Scheme II

Scheme III

Scheme IV

acetal (13) and the Lewis acid $\left(\mathrm{ZnCl}_{2}\right)$. Development of positive charge on the β-acetylenic carbon can be stabilized by the adjacent

Table I. Alkynylation of Halo Acetals

substrate	R^{\prime}	yield, $\%$	$\alpha: \beta$
7	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	49	$1: 0$
	$\mathrm{C}_{6} \mathrm{H}_{5}$	61	$1: 0$
	$\mathrm{H}_{3} \mathrm{COCH}_{2}$	44	$1: 0$
$\mathbf{1 6}$	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	45	$1: 0$
	$\mathrm{C}_{6} \mathrm{H}_{5}$	55	$1: 2.8$
	$\mathrm{H}_{3} \mathrm{COCH}_{2}$	66	$1: 1$
$\mathbf{2 0}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	57	
	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	62	
$\mathbf{2 1}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	50	
	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	57	

Scheme V

Scheme VI

$$
\begin{aligned}
& \mathrm{MeXCH}_{2} \mathrm{Cl}+\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{Cm}=\mathrm{C}-\mathrm{R} \frac{\mathrm{ZnCl}_{2}}{\mathrm{CCl}_{4}} \quad \mathrm{MeX}-\mathrm{CH}_{2} \cdot \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{R} \\
& \text { 20. } x=0 \\
& \text { 21, } x=S \\
& \text { 22a. } x=0, R=P n \\
& 22 \mathrm{~b}, \mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13} \\
& \text { 23a, } X=S, R=P n \\
& \text { 23b, } X=S, R=C_{6} H_{13}
\end{aligned}
$$

trialkyltin moiety (15) ${ }^{11,12}$ that must suffer eventual capture by halide ion to generate the acetylene 2. As with β-silyl carbocationic
(1) For some selected examples of C-coupling to oxygen-centered mixed acetals, see: (a) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976. (b) Schmidt, R. R.; Hoffman, M. Tetrahedron Lett. 1982, 23, 409. (c) Hanessian, S.; Bacquet, C.; Lehong, N. Carbohydr. Res. 1980, 80, C17. (d) Posner, G. H.; Haines, S. R. Tetrahedron Lett. 1985, 26, 1823. (e) Murata, S.; Noyori, R. Tetrahedron Lett. 1982, 23, 2601. (f) Stewart, A. O.; Williams, R. M. J. Am. Chem. Soc. 1985, 107, 4289. (g) Nicolaou, K. C.; Dolle, R. E.; Chucholowski, A.; Randall, J. L. J. Chem. Soc. Chem. Comm. 1984, 1153.
(2) For selected examples of C-coupling to nitrogen-centered mixed acetals, see: (a) Keck, G. E.; Enholm, E. J. Tetrahedron Lett 1985, 26, 3311. (b) Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1983, 24, 1407. (c) Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. J. Org. Chem. 1984, 49, 1149. (d) Hart, D. J.; Kanai, K. J. Am. Chem. Soc. 1983, 105, 1255. (e) Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata, K.; Makino, A. J. Org. Chem. 1984, 49, 300. (f) Barrett, A. G. M.; Quayle, P. J. Chem. Soc., Chem. Comm. 1981, 1076. (g) Martel, A.; Daris, J. P.; Bachand, C.; Menard, M.; Durst, T.; Belleau, B. Can. J. Chem. 1983, 61, 1899. (h) Williams, R. M.; Armstrong, R. W.; Maruyama, L. K.; Dung, J.-S.; Anderson, O. P. J. Am. Chem. Soc. 1985, 107, 3246. (i) Sinclair, P. J.; Zhai, D.; Reibenspies, J.; Williams, R M. J. Am. Chem. Soc. 1986, 108, 1103. (j) Kober, R.; Papadopoulos, K.; Miltz, W.; Enders, D.; Steglich, W.; Reuter, H.; Puff, H. Tetrahedron 1985, 41, 1693. (k) For a review, see: Zaugg, H. E. Synthesis 1984, 85. (1) O'Donnell, M. J.; Falmagne, J. B. Tetrahedron Lett. 1985, 26, 699.
(3) For selected examples of C -coupling to sulfur-centered acetals, see: (a) Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1983, 405. (b) Trost, B. M.; Murayama, E. J. Am. Chem. Soc. 1981, 103, 6529 and references cited therein. (c) Miyazawa, S.; Ikeda, K.; Achiwa, K.; Seika, M. Chem. Lett. 1984, 785. (d) Shimizu, M.; Akiyama, T.; Mukaiyama, T. Chem. Lett. 1984, 1531. (e) Bates, H. A.; Rosenblum, S. B. J. Org. Chem. 1986, 51, 3447. (f) Paterson, I.; Fleming, I. Tetrahedron Lett. 1979, 993 and 995 .
(4) For leading references and a review, see: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA, 1987; Chapter 18. (b) Schreiber, S. L.; Sammakia, T.; Crowe, W. E J. Am. Chem. Soc. 1986 108, 3128. (c) Padmanabhan, S.; Nicholas, K. M. Tetrahedron Lett. 1982, 23, 2555, and references cited therein.
(5) Williams, R. M.; Zhai, D.; Sinclair, P. J. J. Org. Chem. 1986, 51, 5021, and ref 2 h and 2 i .
(6) Yields refer to quantities of analytically pure samples.
(7) The relative stereochemistry of the bromide $\mathbf{3}$ is known to be anti (depicted); the details of this determination shall be published separately.
species, the β-stannyl carbocationic species 15 are stabilized through $\sigma-\pi$ conjugation (hyperconjugation); Eaborn ${ }^{13}$ and Traylor ${ }^{14}$ have shown that these types of reactions involve stepwise cleavage of the $\mathrm{Sn}-\mathrm{C}$ bond as depicted in Scheme IV.

Tri-O-benzyl-D-ribofuranosyl bromide ${ }^{15}$ underwent coupling with the tin acetylides $\mathbf{4 a} \mathbf{a}$ as shown in Table I and Scheme V. Unlike the glucose series, the stereoselectivity of the coupling seemed to be related to the nature of the R^{\prime} group on the tin acetylide. The n-hexyl derivative gave exclusively the α-stereoisomer; the phenyl derivative on the other hand gave an almost 3:1 ratio favoring the β-isomer, and the methoxymethyl derivative furnished a nearly $1: 1$ mixture. Here again, the assignment of stereochemistry to the adducts (17) was not straightforward and required a degradation of the alkyne functionality. Lindlar hydrogenolysis to the Z olefins, followed by ozonolysis, NaBH_{4} reduction, and benzylation, furnished either meso-18 or optically active 19 for the β and α stereoisomers, respectively.

In simpler systems, it was found that both chloromethyl methyl ether ${ }^{18}$ (20) and chloromethyl methyl sulfide (21) underwent coupling with 4 a and $\mathbf{4 b}$ to furnish the respective alkynes 22 and 23 in $50-62 \%$ isolated, purified yields (Scheme VI).

In summary, the methodologies described herein provide a mild and practical preparation of α-alkynyl amines, ethers, and sulfides from the corresponding mixed halo acetals. The recent isolation of ethynylglycine, which displays antibiotic activity and suicide enzyme inhibition toward alanine racemase, indicates that the coupling exemplified by $3 \rightarrow 5$ merits additional study. The potential for further functionalizing the alkyne of the C-glycosides is also an area of recent interest that is being pursued in these laboratories.

Experimental Section

Alkynylation of 3 with $\mathbf{4 a}$ ($\mathbf{5 a}$). To a stirred solution of bromide $\mathbf{3}^{5}$ $[(-)-5(S), 6(R)]\left(0.806 \mathrm{mmol}, 1.0\right.$ equiv) in dry $\mathrm{CCl}_{4}(80 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CPh}(630.5 \mathrm{mg}, 1.612 \mathrm{mmol}, 2.0$ equiv) and a solution of ZnCl_{2} (0.8 M in THF, $2.0 \mathrm{~mL}, 1.612 \mathrm{mmol}, 2.0$ equiv). The mixture was refluxed for 40 min , cooled to $25^{\circ} \mathrm{C}$, and concentrated. The residue was separated by silica gel column chromatography (eluted with $3: 1$ hexanes/EtOAc) to yield $5 a$, which was recrystallized from 50% benzene in hexanes: $218.3 \mathrm{mg}(55.6 \%) ; \mathrm{mp} 206.5-207.5^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+31.2^{\circ}(\mathrm{c}$ $0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 4.92-5.38$ (4 $\mathrm{H}, \mathrm{m}), 5.98(1 / 2 \mathrm{H}, \mathrm{s}), 6.11(1 / 2 \mathrm{H}, \mathrm{s}), 6.45-7.53(20 \mathrm{H}, \mathrm{m})$; IR (NaCl , $\left.\mathrm{CHCl}_{3}\right) 2390,1770,1705 \mathrm{~cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3} / \mathrm{CI}\right) \mathrm{m} / \mathrm{z} 506\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right.$, 8.9), $505(11.4), 489\left(\mathrm{M}^{+}+1,15.5\right), 488\left(\mathrm{M}^{+}, 20.2\right), 106(100)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

L-Homophenylalanine from 5 a (6a). A stirred solution of $5 \mathrm{a}(87.3 \mathrm{mg}$, $0.18 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL), EtOH (1 mL), and $\mathrm{PdCl}_{2}(16 \mathrm{mg}$, $0.09 \mathrm{mmol}, 0.5$ equiv) in a pressure bottle was charged with $\mathrm{H}_{2}(\mathrm{~g})$ to 30 psi and stirred for 40 h at room temperature. The pressure was reduced to 1 atm , purged with N_{2}, filtered through a small pad of Celite,
(8) Crisp, G. T.; Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 7500.
(9) Various stoichiometries were examined to simulate $\mathrm{RC} \equiv \mathrm{CZnCl}$ and $(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Zn}$ species as potential intermediates in the coupling of the alkynyltin reagents via transmetalation; no reaction was observed in all cases.
(10) The ZnCl_{2} is added to the reaction as a 1 M solution in THF and was chosen due to the solubility and anhydrous shelf life of ZnCl_{2} in THF. The addition of THF in excess of the minimal amount required to dissolve the ZnCl_{2} results in decreased yields.
(11) See: Negishi, E. Organometallics in Organic Synthesis; Wiley: New York, 1980; Vol. 1, Chapter 6.
(12) For a related observation of Sn stabilization of an electron-deficient β-reacting carbon, see: Nishiyama, H.; Matsumoto, M.; Arai, H.; Sakaguchi, H.; Itoh, K. Tetrahedron Lett. 1986, 27,1599 . (b) Himbert has extensively studied the amino ethynylation of acid chlorides with 1-(dialkylamino)-2(trialkylstannyl)alkynes; see: Feustel, M.; Himbert, G. Liebigs Ann. Chem. 1982 196. Himbert, G.; Schwickerath, W. Ibid. 19831185 and references cited therein. (c) Pereyre, M.; Quintard, J. P.; Rahm, A. Tin in Oganic Syntheis; Butterworth: London, 1987.
(13) Eaborn, C. J. Organomet. Chem. 1975, 100, 43.
(14) (a) Hosomi, A.; Traylor, T. G. J. Am. Chem. Soc. 1975, 97, 3682. (b) Hartman, G. D.; Traylor, T. G. Ibid. 1975, 97, 6147.
(15) Hanessian, S.; Pernet, A. G. Can. J. Chem. 1974, 52, 1266.
(16) Barker, R.; Fletcher, H. G. J. Org. Chem. 1961, 26, 4605.
(17) α-Aminodecanoic acid (6b) is identical with decyline. See: Greenstein, J. P., Winitz, M. Eds. Chemistry of the Amino Acids; Robert E. Krieger Publishing: Malabar, FL, 1984; Vol. 3.
(18) Caution! Proper safety precautions should be employed when handling chloromethyl methyl ether, which is a cancer suspect agent.
evaporated, and triturated sequentially with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and $\mathrm{Et}_{2} \mathrm{O}$, leaving an insoluble, crystalline residue ($22 \mathrm{mg}, 57 \%$), which was found to be identical with an authentic sample of L-homophenylalanine. ${ }^{2 i}$ The percent of asymmetric induction (ie., ee) was established by conversion to the corresponding MTPA amide as follows.

The crude amino acid obtained above ($10 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{HCl} / \mathrm{EtOH}$ (3 mL of a 1 M solution) was refluxed 2 h and evaporated to dryness. The resulting crude ethyl ester and (-)-MTPA-Cl (12 mg , $0.046 \mathrm{mmol}, 1.0$ equiv) were dissolved in $\mathrm{CCl}_{4}(0.2 \mathrm{~mL})$ and pyridine (0.2 mL), and the resultant mixture was allowed to stand for 12 h at room temperature. Water was added and the mixture thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extracts were washed with $1 \mathrm{~N} \mathrm{HCl}, 10 \%$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and examination of the crude residue by ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR indicated an enantiomeric excess of 94.4%.

Alkynylation of $\mathbf{3}$ with $\mathbf{4 b}(\mathbf{5 b})$. To a stirred solution of bromide 3^{4} $[(-)-5(S), 6(R)]\left(0.33 \mathrm{mmol}, 1.0\right.$ equiv) in dry $\mathrm{CCl}_{4}(80 \mathrm{~mL})$ were added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CC}_{6} \mathrm{H}_{13}(198 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.5$ equiv) and a solution of $\mathrm{ZnCl}_{2}(0.8 \mathrm{M}$ in THF, $0.83 \mathrm{~mL}, 0.662 \mathrm{mmol}, 2.0$ equiv). The mixture was refluxed for 25 min , cooled to room temperature, and concentrated. The residue was separated by PTLC silica gel chromatography (eluted with $4: 1$ hexanes/EtOAc) to yield $\mathbf{5 b}$, which was recrystallized from hexanes: $87 \mathrm{mg}(53.1 \%) ; \mathrm{mp} \mathrm{113.5-114}{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+6.87^{\circ}(c 0.67$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta-0.82(3 \mathrm{H}, \mathrm{m})$, $1.22-1.55(8 \mathrm{H}, \mathrm{m}), 2.18-2.28(2 \mathrm{H}, \mathrm{m}), 4.87-5.27(4 \mathrm{H}, \mathrm{m}), 5.72(1 / 2$ $\mathrm{H}, \mathrm{s}), 5.84(1 / 2 \mathrm{H}, \mathrm{s}), 6.38-7.40(15 \mathrm{H}, \mathrm{m})$; IR ($\mathrm{NaCl}, \mathrm{CHCl}_{3}$) 2380, $1760,1700 \mathrm{~cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3} / \mathrm{CI}\right) \mathrm{m} / \mathrm{z} 513\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 50.2\right) ; 496$ (33.3); 106 (100). Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S)-2-Aminodecanoic Acid from 5b (6b). A stirred solution of 5b ($45.9 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.0$ equiv) in THF (2.5 mL), EtOH (1.5 mL), and $\mathrm{PdCl}_{2}(4.95 \mathrm{mg}, 0.028 \mathrm{mmol}, 0.3$ equiv) in a pressure bottle was charged with $\mathrm{H}_{2}(\mathrm{~g})$ to 30 psi and stirred for 40 h at room temperature. The pressure was reduced to 1 atm , purged with N_{2}, filtered through a small pad of Celite, evaporated, and triturated sequentially with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$, leaving an insoluble, crystalline residue $\mathbf{6} \mathbf{b}^{17}$ [14.1 mg $(67.7 \%)]$. The percent of asymmetric induction (ie., ee) was established by conversion to the corresponding MTPA amide as follows. The synthetic $\mathbf{6 b}$ had spectroscopic properties identical with those reported in the literature. ${ }^{17}$

The crude amino acid obtained above ($8.5 \mathrm{mg}, 0.038 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{HCl} / \mathrm{EtOH}$ (2 mL of a 1 M solution) was refluxed for 2 h and evaporated to dryness. The resulting crude ethyl ester and (-)-MTPA-Cl ($9.6 \mathrm{mg}, 0.038 \mathrm{mmol}, 1.0$ equiv) were dissolved in $\mathrm{CCl}_{4}(0.2 \mathrm{~mL}$) and pyridine (0.2 mL), and the resultant mixture was allowed to stand for 72 h at room temperature. Water was added and the mixture thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extracts were washed with 1 N HCl , $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ and dried over anhydrous magnesium sulfate. Filtration, evaporation of the solvent, and examination of the crude residue by ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) indicated an enantiomeric excess of 98%. The corresponding racemic amino acid (prepared from racemic 3) was coupled with (- -MTPA- Cl to rigorously identify the NMR resonances of the antipodal amino acid.

1-Metboxy-2-nonyne (22b). To a stirred solution of chloromethyl methyl ether ${ }^{18}\left(32 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ were added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CC}_{6} \mathrm{H}_{13}(159 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) and a solution of ZnCl_{2} (0.3 mL of a 0.7 M THF solution, $0.2 \mathrm{mmol}, 0.5$ equiv) at reflux temperature. The mixture was stirred at reflux for 30 min , cooled to $0^{\circ} \mathrm{C}$, and concentrated at reduced pressure at $0^{\circ} \mathrm{C}$. The residue was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and separated by PTLC silica gel (eluted twice with hexanes and then with $2: 1$ hexanes $/ \mathrm{EtOAc}$) to afford $38 \mathrm{mg}(62 \%)$ of $1-m e t h o x y-2$-nonyne as an oil: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.86(3 \mathrm{H}, \mathrm{m}), 1.22-1.58$ (8 $\mathrm{H}, \mathrm{m}), 2.16-2.26(2 \mathrm{H}, \mathrm{m}), 3.36(3 \mathrm{H}, \mathrm{s}), 4.08(2 \mathrm{H}, \mathrm{m})$; IR (NaCl neat) $2260 \mathrm{~cm}^{-1}$; MS $\left(\mathrm{NH}_{3} / \mathrm{CI}\right) \mathrm{m} / \mathrm{z} 172\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 100\right), 155\left(\mathrm{M}^{+}+1\right.$, 1.7), 140 (2.0), 123 (3.2). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

1-Phenyl-3-methoxy-1-propyne (22a). To a stirred solution of chloromethyl methyl ether ${ }^{18}$ ($32 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) in CCl_{4} (30 mL) were added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CPh}(155 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) and a solution of $\mathrm{ZnCl}_{2}(0.3 \mathrm{~mL}$ of a 0.7 M THF solution, $0.2 \mathrm{mmol}, 0.5$ equiv) at reflux temperature. The mixture was stirred at reflux for 30 min , cooled to $0^{\circ} \mathrm{C}$, and concentrated at reduced pressure at $0^{\circ} \mathrm{C}$. The residue was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and separated by PTLC silica gel (eluted twice with hexanes and then $2: 1$ hexanes/EtOAc) to afford 33 mg (57\%) of 1-phenyl-3-methoxy-1-propyne as an oil: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta-3.46(3 \mathrm{H}, \mathrm{s}), 4.32(2 \mathrm{H}, \mathrm{s})$, $7.26-7.48(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $2230,1570 \mathrm{~cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3} / \mathrm{CI}\right)$ $m / z 164\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 100\right), 147\left(\mathrm{M}^{+}+1,6.5\right), 146\left(\mathrm{M}^{+}, 3.9\right), 132$ (43.9), 115 (23.3). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

1-(Methylthio)-2-nonyne (23b). To a stirred solution of chloromethyl methyl sulfide ($34.6 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CCl}_{4}(30 \mathrm{~mL}$) were
added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{C}_{6} \mathrm{H}_{13}$ ($214 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.5$ equiv) and a solution of ZnCl_{2} (0.26 mL of a 0.7 M THF solution, $0.18 \mathrm{mmol}, 0.5$ equiv) at reflux temperature. The mixture was allowed to stir for 30 min at reflux, cooled to $0^{\circ} \mathrm{C}$, and concentrated at reduced pressure at $0^{\circ} \mathrm{C}$. The residue was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and separated by PTLC silica gel (eluted twice with hexanes and then $3: 1$ hexanes $/ \mathrm{EtOAc}$) to afford 35 mg (58%) of 1 -(methylthio)-2-nonyne as an oil: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.86(3 \mathrm{H}, \mathrm{m})$, $1.22-1.58(8 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.16-2.26(2 \mathrm{H}, \mathrm{m}), 3.22(2 \mathrm{H}, \mathrm{t}, J$ $=2.1 \mathrm{~Hz}) ; \mathrm{IR}\left(\mathrm{NaCl}\right.$, neat) $2850,2220,1430,720,680 \mathrm{~cm}^{-1}$; MS $\left(\mathrm{NH}_{3} / \mathrm{CI}\right) \mathrm{m} / \mathrm{z} 188\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 10.8\right), 171\left(\mathrm{M}^{+}+1.52 .9\right), 170\left(\mathrm{M}^{+}\right.$, 6.2), 155 (24). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{S}$.

1-Phenyl-3-(methylthio)-1-propyne (23a). To a stirred solution of chloromethyl methyl sulfide ($34.6 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv) in CCl_{4} (30 mL) were added $\mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CPh}(210 \mathrm{mg}, 0.537 \mathrm{mmol}, 1.5$ equiv) and a solution of $\mathrm{ZnCl}_{2}(0.26 \mathrm{~mL}$ of a 0.7 M THF solution, $0.18 \mathrm{mmol}, 0.5$ equiv) at reflux temperature. The mixture was stirred at reflux for 30 \min, cooled to $0^{\circ} \mathrm{C}$, and concentrated at reduced pressure at $0^{\circ} \mathrm{C}$. The residue was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and separated by PTLC silica gel (eluted twice with hexanes and then $2: 1$ hexanes/EtOAc) to afford 29 mg (50%) of 1 -phenyl-3-(methylthio)-1propyne as an oil. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 2.29(3 \mathrm{H}$, s), $3.47(2 \mathrm{H}, \mathrm{s}), 7.28-7.45(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $2300,1595,1570$, $1420,730,690 \mathrm{~cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3} / \mathrm{CI}\right) \mathrm{m} / \mathrm{z} 180\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 10.6\right), 163$ $\left(\mathrm{M}^{+}+1,65.2\right), 162\left(\mathrm{M}^{+}, 26.0\right), 132(46.1), 115(100)$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~S}\right)$ C, H, S.

General Procedure for Preparation of C-Acetylene Derivatives of Glucose (8) and Ribose (17). To a stirring solution of 2,3,4,6-tetra- O -benzyl- O-benzyl- O-(p-nitrobenzoyl)- α-D-glucopyranose (1.0 equiv) or 2,3,5-tri- O-benzyl- O-(p-nitrobenzoyl)- β-D-ribose (1.0 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was bubbled anhydrous HBr for $3-5 \mathrm{~min}$ at room temperature. The precipitated p-nitrobenzoic acid was removed by filtration, and the filtrate was evaporated to dryness, affording a syrup, which was directly used for the next reaction without purification. ${ }^{15,16}$

The syrup was dissolved in anhydrous CCl_{4}. The solution was heated to reflux, to which the corresponding tri- n-butyltin acetylide ($\mathrm{Bu}_{3} \mathrm{SnC} \equiv$ CR) (1.05 equiv) and a solution of ZnCl_{2} in THF (0.5 equiv) were added. The resulting mixture was allowed to reflux for $20-30 \mathrm{~min}$, cooled, evaporated, and separated on PTLC (silica gel, eluted with hexane/EtOAc (3:1)). Yields, physical data, and reaction scale are detailed below for each.

General Procedure for Selective Hydrogenation of C-Acetylene Derivatives of Glucose and Ribose To Form the Corresponding Olefins. To a solution of C-acetylene derivative of glucose or ribose (1.0 equiv) in absolute ethanol were added Lindlar catalyst ($5 \% \mathrm{Pd} / \mathrm{CaCO} 3 / \mathrm{Pb}$) $(0.2$ equiv) and quinoline (1.0 equiv, distilled over zinc before use). The reaction flask was evacuated and then flushed with H_{2}. The evacuation $/ \mathrm{H}_{2}$ flushing sequence was repeated four times, and the mixture was allowed to stir under 1 atm of H_{2} for 12 h . The suspension was filtered through a plug of Celite. The filtrate was evaporated and separated on PTLC (silica gel, eluted with hexane/EtOAc (4:1)).

General Procedure for Ozonolysis and Reduction of Z Olefin Derivatives of Glucose (9-12) and Ribose (18, 19). The olefin derivative of glucose or ribose (1.0 equiv) was dissolved in anhydrous methylene chloride. To the solution was bubbled a stream of O_{3} at $-78^{\circ} \mathrm{C}$ until no starting material was detected by TLC (usually $20-40 \mathrm{~min}$). The O_{3} dissolved in solution was purged with N_{2}. At the same temperature dimethyl sulfide (3.0 equiv) was added to the solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The cooling bath was removed, and the stirring was continued for $2 \mathrm{~h} . \mathrm{NaBH}_{4}$ (excess) was added. The resulting mixture was stirred at room temperature for 2 h . Acidification, extraction, and separation of the crude product on PTLC (silica gel, eluted with hexane/EtOAC (2:1)) afforded the hydroxymethyl derivatives that were then derivatized as follows.

General Procedure for Benzylation of (2,3,4,6-Tetra-O-benzyl-or-Dglucopyranosyl)methanol (11) and (2,3,5-Tri-O-benzyl- α-D-ribosyl)- and (2,3,5-Tri-O-benzyl- β-D-ribosyl)methanols (18 and 19). To a solution of 2,3,4,6-tetra- O-benzyl- α-D-glucopyranosylmethanol (19) or 2,3,5-tri-O-benzyl-D-ribosylmethanol (1.0 equiv) in anhydrous tetrahydrofuran was added NaH (3.0 equiv). The resulting suspension was stirred at room temperature for 2 h , and benzyl bromide (1.3 equiv) was added. The mixture was allowed to stir at room temperature for 12 h . Workup was in the usual manner. The crude product was separated on PTLC (silica gel, eluted with hexane/EtOAc (3:1)).
(2,3,4,6-Tetra-O-benzyl- α-D-glucopyranosyl)-1-octyne (8b). From $280 \mathrm{mg}(0.406 \mathrm{mM})$ of $2,3,4,6$-tetra- O-benzyl- O-(p-nitrobenzoyl)- α-Dglucopyranose, $170 \mathrm{mg}(0.427 \mathrm{mM})$ of (tri-n-butylstannyl)octyne, and $290 \mu \mathrm{~L}$ of a solution of zinc chloride in anhydrous THF (0.7 M solution, 0.203 mM), $125 \mathrm{mg}(48.7 \%)$ of 8 b was obtained (oil): $[\alpha]^{2 s}{ }_{\mathrm{D}}+50.7^{\circ}(c$ $0.21, \mathrm{CHCl}_{3}$), ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.86(3 \mathrm{H} . \mathrm{t} . J$
$=6.4 \mathrm{~Hz}), 1.25-1.55(8 \mathrm{H}, \mathrm{m}), 2.25(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.59-3.73(4$ $\mathrm{H}, \mathrm{m}), 3.90-4.00(2 \mathrm{H}, \mathrm{m}), 4.45-4.54(8 \mathrm{H}, \mathrm{m}), 4.98(2 \mathrm{H}, \mathrm{d}, J=10.8$ Hz), 7.12-7.3 ($20 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3030-3100,2860-2920,2220$, $1600,1585,1500,1455,1360,1205,1120,1080,1040,1025,900,725$, $690 \mathrm{~cm}^{-1} ;$ MS $m / z 633\left(\mathrm{M}^{+}+1,0.3\right), 615(0.2), 541(1.9), 107(100)$, 91 (100).
(2,3,4,6-Tetra-O-benzyl- α-D-glucopyranosyl) phenylacetylene (8a). From $500 \mathrm{mg}(0.726 \mathrm{mmol}$) of 2,3,4,6-tetra- O-benzoyl- O-(p-nitro-benzoyl)- α-D-glucopyranose and $298 \mathrm{mg}(0.762 \mathrm{mM})$ of phenyl tributyltin acetylide, 274.5 mg of 8 a was obtained (60.6%): $[\alpha]^{25}{ }_{\mathrm{D}}+64.3^{\circ}$ (c $0.255, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.63-3.79$ ($5 \mathrm{H}, \mathrm{m}$), 3.97-4.07 ($2 \mathrm{H}, \mathrm{m}$), 4.46-4.66 ($3 \mathrm{H}, \mathrm{m}$), 4.74-5.09 ($5 \mathrm{H}, \mathrm{m}$), 7.22-7.49 ($25 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3040-3090,2900,2870,2340$, $1600,1490,1450,1390,1360,1300,1240,1150,1080,1060,1020,995$, $900,740,725,685 \mathrm{~cm}^{-1}$.
(2,3,4,6-Tetra-O-benzyl- α-D-glucopyranosyl)-3-methoxy-1-propyne (8c). From $500 \mathrm{mg}(0.726 \mathrm{mM}$) of 2,3,4,6-tetra- O-benzyl- O-(p-nitro-benzoyl)- α-D-glucopyranose and 274 mg (0.762 mM) of methoxy (tri-n-butylstannyl)propyne, 190 mg of $\mathbf{8 c}$ was obtained: 44.2%; $[\alpha]^{25}{ }_{\mathrm{D}}$ $+46.2^{\circ}\left(c 0.225, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.38$ ($3 \mathrm{H}, \mathrm{s}$), 3.62-3.7 ($5 \mathrm{H}, \mathrm{m}$), 3.86-3.95 ($2 \mathrm{H}, \mathrm{m}$), 4.18 ($2 \mathrm{H}, \mathrm{s}$), 4.45-4.95 ($8 \mathrm{H}, \mathrm{m}$), 7.26-7.34 ($20 \mathrm{H}, \mathrm{m}$); IR (NaCl neat) $3020-3080,2860-2900$, $2320,1600,1520,1490,1450,1355,1260,1230,1200,1175,1150,1080$, $1060,1015,895,850,735,683 \mathrm{~cm}^{-1}$; MS m/z $592\left(\mathrm{M}^{+}, 0.1\right), 591(0.2)$, $501(0.9), 107(100)$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.
(2,3,5-Tri- O-benzyl- β-D-ribosyl)- and (2,3,5-Tri- O-benzyl- α-Dribosyl)octyne (17 b). From $500 \mathrm{mg}(0.879 \mathrm{mM})$ of $2,3,5$-tri- O-benzyl-O-(p-nitrobenzoyl)- β-D-ribose and $368 \mathrm{mg}(0.92 \mathrm{mM}$) of (tributylstannyl)octyne, 203 mg of $\mathbf{1 7 \mathrm { b }}$ was obtained: $45.1 \% ;[\alpha]^{25}{ }_{\mathrm{D}}+36.7^{\circ}(c$ $0.86, \mathrm{CHCl}_{3}$), ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J$ $=3.2 \mathrm{~Hz}), 1.22-1.47(8 \mathrm{H}, \mathrm{m}), 2.14-2.25(2 \mathrm{H}, \mathrm{m}), 3.50-3.65(2 \mathrm{H}, \mathrm{m})$, 3.92-4.02 ($2 \mathrm{H}, \mathrm{m}$), 4.41-4.77 ($8 \mathrm{H}, \mathrm{m}$), 7.25-7.46 ($15 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3038-3090,2940,2860,2235,1605,1500,1455,1350,1205,1125$, 1090, 1040, 1025, 900, 725, $690 \mathrm{~cm}^{-1}$; MS m/z $512\left(\mathrm{M}^{+}, 4.0\right), 420(7.3)$, 404 (5.5), $181(60.2), 107(100)$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(2,3,5-Tri- O-benzyl- β-D-ribosyl)- and (2,3,5-Tri- O-benzyl- α-Dribosyl) phenylacetylene (17a). From $350 \mathrm{mg}(0.615 \mathrm{mM})$ of 2,3,5-tri-O-benzoyl- O-(p-nitrobenzoyl)- β-D-ribose and 258 mg (0.66 mM) of phenyl(tri-n-butylstannyl)acetylene, 170 mg (54.9%) of 17 a was obtained; $\alpha: \beta=1: 2.8$.
α-Anomer: $[\alpha]^{25}{ }_{\mathrm{D}}+79.55^{\circ}\left(c 0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, CDCl_{3}, vs TMS $) \delta 3.53-3.75(2 \mathrm{H}, \mathrm{m}), 4.12(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz})$, 4.33-5.00 ($8 \mathrm{H}, \mathrm{m}$), $7.28-7.30(15 \mathrm{H}, \mathrm{m}), 7.41-7.45(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3030-3060,2920,2860,2290,2220,1580,1520,1490,1400,1350$, $1310,1260,1200,1110,1070,1035,1020,900,725,685 \mathrm{~cm}^{-1} ;$ MS m / z $505\left(\mathrm{M}^{+}+1,0.4\right), 457(0.2), 413(0.8), 107(56.3), 91(100)$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
β-Anomer: $[\alpha]^{25}{ }_{\mathrm{D}} 3.55^{\circ}$ (c $0.62, \mathrm{CHCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR (270 MHz , CDCl_{3}, vs TMS) $\delta 3.61-3.64(2 \mathrm{H}, \mathrm{m}), 4.09-4.13(2 \mathrm{H}, \mathrm{m}), 4.20-4.25$ $(1 \mathrm{H}, \mathrm{m}), 4.50-4.67(5 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{d}$, $J=4.3 \mathrm{~Hz}), 7.25-7.39(15 \mathrm{H}, \mathrm{m}), 7.40-7.44(5 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) 3020-3080, 2920, 2860, 2220, 1595, 1520, 1490, 1400, 1350, 1300, 1275, $1250,1200,1110,1080,1040,1020,900,740,720,685 \mathrm{~cm}^{-1} ;$ MS m / z $505\left(\mathrm{M}^{+}+1,1.8\right), 413(3.2), 107(100), 91$ (100).
(2,3,5-Tri- O-benzyl- β-D-ribosyl)- and ($2,3,5$-Tri- O-benzyl- α-D-ribosyl)- β-methoxy-1-propyne (17c). From 500 mg (0.88 mM) of 2,3,5-tri- O-benzyl- O-(p-nitrobenzoyl)- β-D-ribose and $331 \mathrm{mg}(0.92 \mathrm{mM}$) of methoxy(tri- n-butylstannyl) propyne, 272 mg of $\mathbf{1 7 c}(65.5 \%)$ was obtained; $\alpha ; \beta=1: 1$.
α-Anomer: $[\alpha]^{25}{ }_{\mathrm{D}}+68.3^{\circ}\left(c \quad 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (270 MHz , CDCl_{3} vs TMS) $\delta 3.32(3 \mathrm{H}, \mathrm{s}), 3.48-3.66(2 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{s})$, 4.15-4.88 ($10 \mathrm{H}, \mathrm{m}$), 7.27-7.40 $15 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3030-3090$, $2920,2900,2860,2220,1600,1490,1450,1350,1310,1270,1200,1180$, $1115,1085,1040,1020,900,725,690 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / z 455\left(\mathrm{M}^{+}-17,0.1\right)$, 441 (0.3), 291 (0.5), 107 (93.4), 91 (100).
β-Anomer: $[\alpha]^{2 S}{ }_{D}+6.03^{\circ}\left(c 0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (270 MHz , CDCl_{3}, vs TMS $) \delta 3.31(3 \mathrm{H}, \mathrm{s}), 3.57-3.60(2 \mathrm{H}, \mathrm{m}) 4.03(2 \mathrm{H}, \mathrm{d}, J=$ $4.5 \mathrm{~Hz}), 4.07(2 \mathrm{H}, \mathrm{s}), 4.15-4.20(1 \mathrm{H}, \mathrm{m}), 4.47-4.72(7 \mathrm{H}, \mathrm{m})$, 7.29-7.34 ($15 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3030-3080,2920,2860,2220$, $1590,1540,1490,1450,1400,1350,1300,1275,1250,1200,1110,1080$ 1040, $1020,900,810,740,720,685 \mathrm{~cm}^{-1} ;$ MS $m / z 455\left(\mathrm{M}^{+}-17 ; 0.2\right)$, 441 (0.2), $382(0.2), 91$ (100)
(2,3,4,6-Tetra-O-benzyl- α-D-glucopyranosyl)methanol (9). To a solution of $\mathbf{8 b}$ ($120 \mathrm{mg}, 0.19 \mathrm{mM}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was bubbled O_{3} at $-78^{\circ} \mathrm{C}$ until no starting material was detected by TLC. The reaction solution was purged with dry nitrogen, and $\mathrm{Me}_{2} \mathrm{~S}(38 \mu \mathrm{~L}$, $0.513 \mathrm{mM}, 2.7$ equiv) was added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h ; the cooling bath was removed and stirring continued for 3 h . A solution of NaBH_{4} ($74.8 \mathrm{mg}, 1.9 \mathrm{mM}, 10.0$ equiv) in ethanol was added into the reaction mixture and then stirred for 2 h . The mixture
was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 2 mL of water was added. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated on PTLC (silica gel, eluted with hexane/EtOAc $(2: 1) ; 41 \mathrm{mg}$ of $9(39.1 \%)$ was obtained: $[\alpha]_{\mathrm{D}}{ }^{25}$ $+13.5^{\circ}$ (c $0.17, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) δ 3.67-3.78 (4 H, m), 3.81-3.90(4 H, m), 4.15 (1 H, s), 4.51-4.87 (9 H, m), 7.26-7.43 ($20 \mathrm{H}, \mathrm{m}$) ; IR (NaCl , neat) 3440 (br), 3030-3080, 2920, $2860,1600,1490,1450,1355,1310,1260,1200,1150,1080,1060,1020$, $800,725,685 \mathrm{~cm}^{-1} ;$ MS $\left.m / z 555\left(\mathrm{M}^{+}+1,0.6\right), 91100\right)$.

1-(1 (Z)-Octenyl)-2,3,4,6-tetra-O-benzyl- α-D-glucopyranose. From $300 \mathrm{mg}(0.474 \mathrm{mM})$ of $\mathbf{8 b}, 204 \mathrm{mg}$ of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $57 \mu \mathrm{~L}$ of quinoline, $271 \mathrm{mg}(90.2 \%$) of the Z olefin was obtained and directly subjected to the subsequent ozonolysis/reduction: $[\alpha]^{25}{ }_{\mathrm{D}} 49.15^{\circ}$ (c 1.29 , CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=4.2$ Hz), 1.15-1.39 (8 H, m), 2.15-2.18 ($2 \mathrm{H}, \mathrm{m}$), 3.60-3.80 ($6 \mathrm{H}, \mathrm{m}$), 4.42 $(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 4.60-4.66(3 \mathrm{H}, \mathrm{m})$, 4.78-5.00 (4 H, m), 5.76-5.81 ($2 \mathrm{H}, \mathrm{m}$), 7.25-7.38 ($20 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3030-3080,2950,2920,2850,1640,1600,1530,1490,1450,1355$, $1315,1200,1150,1110,1080,1035,1020,720,685 \mathrm{~cm}^{-1}$. From 250 mg $(0.396 \mathrm{mM})$ of the olefin obtained above, $87.4 \mu \mathrm{~L}$ of dimethyl sulfide, and 150 mg of sodium borohydride, 103.7 mg (47.3%) of 9 was obtained. This material was identical with that obtained from the direct ozonolysis of $\mathbf{8 b}$.
-(1-Phenyl-2(Z)-ethylene)-2,3,4,6-tetra- O-benzyl- α-D-glucopyranose. From $240 \mathrm{mg}(0.385 \mathrm{mM})$ of $\mathbf{8 a}, 164 \mathrm{mg}$ of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and 46 $\mu \mathrm{L}$ of quinoline, 239.2 mg (99%) of the Z olefin was obtained and directly carried on to 9: $[\alpha]^{25} \mathrm{D}+82.4^{\circ}$ (c 0.75, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (270 MHz , CDCl_{3}, vs TMS) $\delta 3.45-3.96(6 \mathrm{H}, \mathrm{m}), 4.41-4.98(9 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3030-3090,2920,2900,2860,1630,1605,1575,1500,1455,1360$, $1300,1235,1200,1150,1110,1080,1055,1020,990,900,830,800,760$, $725,685 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{5}\right)$. From $220 \mathrm{mg}(0.35 \mathrm{mM})$ of the Z olefin obtained above, $78 \mu \mathrm{~L}(1.054 \mathrm{mM})$ of dimethyl sulfide, and 132 $\mathrm{mg}(3.5 \mathrm{mM})$ of sodium borohydride, 88.3 mg of 9 was obtained.

1-(3-Methoxy- $\mathbf{1}^{\prime}(Z)$-propenyl)-2,3,4,6-tetra- O-benzyl- α-D-glucopyranose. From $160 \mathrm{mg}(0.27 \mathrm{mM})$ of $\mathbf{8 c}, 115 \mathrm{mg}$ of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $32 \mu \mathrm{~L}$ of quinoline, $150.5 \mathrm{mg}(93.9 \%)$ of the Z olefin was obtained and directly carried on to 9: $[\alpha]^{2 S}{ }_{\mathrm{D}}+56.0^{\circ}\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) in $\delta 3.30(3 \mathrm{H}, \mathrm{s}), 3.59-3.77(6 \mathrm{H}, \mathrm{m})$, 4.05-4.18 (3 H, m), 4.41-4.98 (8 H, m), 7.21-7.60 ($20 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3030-3090,2860-2920,1610,1580,1495,1455,1395,1360,1320$, $1200,1180,1150,1110,1080,1060,1020,990,950,900,720,685 \mathrm{~cm}^{-1}$. From $145 \mathrm{mg}(0.24 \mathrm{mM})$ of the Z olefin obtained above, $54 \mu \mathrm{~L}(0.732$ mM) of dimethyl sulfide, and $93 \mathrm{mg}(2.44 \mathrm{mM})$ of sodium borohydride, 12 mg of 9 was obtained (11%).

1,3,4,5,7-Penta-O-benzyl-2,6-anhydro-D-glycero-L-gulo-hepitol (11). From $80 \mathrm{mg}(0.144 \mathrm{mM})$ of $9,8.4 \mathrm{mg}(0.352 \mathrm{mM})$ of NaH , and $18 \mu \mathrm{~L}$ (0.152 mM) of benzylbromide, 82.6 mg of $11(88.9 \%)$ was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}+19.5^{\circ}\left(c 1.63, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.61-3.8310 \mathrm{H}, \mathrm{m}), 4.45-4.65(7 \mathrm{H}, \mathrm{m}), 4.72-4.89(2 \mathrm{H}, \mathrm{m}), 7.21-7.41$ ($25 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) 3010-3090, 2860-2900, 1600, 1585, 1498 , $1455,1390,1360,1310,1270,1210,1150,1110,1090,1060,1025,900$, $810,750,730,690 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / z 643\left(\mathrm{M}^{+}-1,0.4\right), 553(1.8), 537(0.3)$, 179 (89.9), 107 (100). Anal. ($\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{O}_{6}$) C, H.

1,3,4,5,7-Penta-O-acetyl-2,6-anhydro-D-glycero-L-gulo -hepitol (12). To a solution of $9(100 \mathrm{mg}, 0.181 \mathrm{mM})$ in ethanol was added $5 \% \mathrm{Pd}$ on charcoal. The reaction flask was evacuated and flushed with H_{2}. The evacuation $/ \mathrm{H}_{2}$ flushing sequence was repeated four times, and the mixture was allowed to stir under 1 atm of H_{2} for 12 h . The suspension was filtered through a plug of Celite. The filtrate was evaporated to a syrup. The syrup was dissolved in 3 mL of acetic anhydride. To the solution was added $\mathrm{NaOAc}(59 \mathrm{mg}, 0.72 \mathrm{mM}$). The mixture was heated to reflux for 3 h and cooled. To the mixture was added a mixture of ice and aqueous NaHCO_{3} solution, and the solution was stirred 5 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated on PTLC (silica gel, eluted with hexane/EtOAc (3:1). A total of $37.7 \mathrm{mg}(51.6 \%)$ of $\mathbf{1 2}$ was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}+48.8^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 2.01-2.21(15 \mathrm{H}, \mathrm{m}), 4.06-4.13(3 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=5.1$ and $12.4 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and 5.9 Hz$), 4.67(1 \mathrm{H}, \mathrm{dd}, J=8.41$ and 12.5 Hz), $5.02(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}), 5.13-5.18(1 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}$, $\mathrm{t}, J=8.9 \mathrm{~Hz}$); IR (NaCl , neat) $2950,1750,1370,1220,1090,1020$ $\mathrm{cm}^{-1} ; \mathrm{MS} m / z 405\left(\mathrm{M}^{+}+1,1.5\right), 363$ (2.9), 345 (100), 303 (17.5), 165 (20.3).

1-(2,3,5-Tri-O-benzyl- α-D-ribosyl)-1 (\boldsymbol{Z})-octene. From 179 mg (0.35 mM) of $\alpha-17 \mathrm{~b}$ and 149 mg of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}, 21 \mathrm{mg}(11.7 \%)$ of the Z olefin was obtained. As a byproduct, 140 mg (77.5%) of $1-(2,3,5-$ tri- O-benzyl- α-D-ribosyl)octane was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}+32.9^{\circ}(c 0.42$, CHCl_{3}) ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 0.87(3 \mathrm{H}, \mathfrak{t}, J=6.2$ $\mathrm{Hz}), 1.17-1.44(8 \mathrm{H}, \mathrm{m}), 2.05-2.13(2 \mathrm{H}, \mathrm{m}), 3.56-3.74(4 \mathrm{H}, \mathrm{m}), 4.07$
(1 H , dd, $J=4.2$ and 8.5 Hz), $4.32-4.80(7 \mathrm{H}, \mathrm{m}), 5.48-5.57(1 \mathrm{H}, \mathrm{m})$, $5.70-5.78(1 \mathrm{H}, \mathrm{m}), 7.25-7.48(15 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3030-3080$, $2850-2920,1660,1600,1580,1495,1455,1360,1300,1200,1080,1060$, 1020, $960,900,725,685 \mathrm{~cm}^{-1} \mathrm{MS} m / z 515\left(\mathrm{M}^{+}+1,0.2\right), 423(0.6)$, 89 (100).
(2,3,5-Tri- O-benzyl- α-D-ribosyl) methanol. From 20 mg (0.039 mM) of the Z olefin, $9 \mu \mathrm{~L}(0.117 \mathrm{mM})$ of dimethyl sulfide, and $15 \mathrm{mg}(0.39$ mM) of sodium borohydride, 6.9 mg of the α-hydroxymethyl derivative was obtained: $40.8 \% ;[\alpha]^{2 S}{ }_{\mathrm{D}}+7.19^{\circ}\left(c 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ vs TMS) $\delta 2.6(1 \mathrm{H}, \mathrm{br}), 3.53(2 \mathrm{H}, \mathrm{dd}, J=3.8$ and 7.2 $\mathrm{Hz})$, 3.79-3.84 ($2 \mathrm{H}, \mathrm{m}$), $4.04(1 \mathrm{H}, \mathrm{m}), 4.18-4.23(2 \mathrm{H}, \mathrm{m}), 4.27-4.32$ ($1 \mathrm{H}, \mathrm{m}$), 4.45-4.75 ($6 \mathrm{H}, \mathrm{m}$); IR (NaCl neat) 3460 (br), 3030-3080, 2860-2920, 1600, 1490, 1455, 1400, 1350, 1270, 1205, 1120, 1080, 1050, 1020, 910, 730, 690; MS m/z $435\left(\mathrm{M}^{+}+1,1.5\right), 343$ (2.6), 91 (100). From $20 \mathrm{mg}(0.046 \mathrm{mM})$ of the alcohol obtained above, $3.3 \mathrm{mg}(0.138$ $\mathrm{mM})$ of NaH , and $7 \mu \mathrm{~L}(0.06 \mathrm{mM})$ of benzyl bromide, $18 \mathrm{mg}(74.7 \%)$ of 19 was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}+32.1^{\circ}\left(c 0.34, \mathrm{CHCl}_{3} ;{ }^{1} \mathrm{H}\right.$ NMR $(270 \mathrm{MHz}$, CDCl_{3}, vs TMS $) \delta 3.48-3.68(2 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz})$, 4.02-4.12 ($2 \mathrm{H}, \mathrm{m}$), 4.19-4.29 ($2 \mathrm{H}, \mathrm{m}$), 4.42-4.74 ($8 \mathrm{H}, \mathrm{m}$), 7.25-7.50 ($20 \mathrm{H}, \mathrm{m}$); IR (NaCl, neat) 3030-3080, 2860-2920, 1600, 1500, 1360 , 1350, 1260, 1200, 1150, 1085, 1020, 725, $690 \mathrm{~cm}^{-1}$; MS $m / z 525\left(\mathrm{M}^{+}\right.$ $+1,2.5), 433(1.6), 341$ (1.9), 91 (100). Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}$.

1-(1-Phenyl-2(Z)-ethylene)-2,3,5-tri-O-benzyl- $\boldsymbol{\beta}$-D-ribose. From 120 $\mathrm{mg}(0.238 \mathrm{mM})$ of 17 a (β anomer), 101 mg of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $20 \mu \mathrm{~L}$ of quinoline, 114.5 mg (95\%) of the Z olefin was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}$ $+61.43^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.53$ $(2 \mathrm{H}, \mathrm{s}), 3.81(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 3.97-3.99(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{d}$, $J=3.8 \mathrm{~Hz}), 4.46-4.68(6 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{m}), 5.61(1 \mathrm{H}, \mathrm{t}, J=8.7$ $\mathrm{Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 7.18-7.42(20 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3030-3090,2900,2860,1600,1580,1496,1455,1360,1305,1250,1205$, $1120,1080,1045,1020,900,800,770,730,690 \mathrm{~cm}^{-1}$. From 25 mg $(0.049 \mathrm{mM})$ of the Z olefin obtained above, $10.9 \mu \mathrm{~L}(0.148 \mathrm{mM})$ of dimethyl sulfide, and $18.5 \mathrm{mg}(0.49 \mathrm{mM})$ of sodium borohydride, 9.1 mg (42.8%) of the hydroxymethyl derivative was obtained: $[\alpha]^{25}{ }_{\mathrm{D}}+23.03^{\circ}$ ($c 0.89, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 2.7(1 \mathrm{H}$, br), $3.48(2 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{dd}, J=11.8$ and 25.1 Hz$)$, 4.02-4.17 ($2 \mathrm{H}, \mathrm{m}$), 4.59-4.61 ($6 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) 3430 (br), 3040-3090, 2870-2920, 1600, 1580, 1500, 1455, 1420, 1395, 1360, 1310, $1265,1200,1115,1085,1040,1020,935,900,890,730,690 \mathrm{~cm}^{-1}$. From $35 \mathrm{mg}(0.081 \mathrm{mM})$ of the β-hydroxymethyl derivative obtained above, $5.8 \mathrm{mg}(0.242 \mathrm{mM})$ of NaH , and $13 \mu \mathrm{~L}(0.105 \mathrm{mM})$ of benzyl bromide, 25 mg (59%) of 18 was obtained: $[\alpha]^{25}{ }_{\mathrm{D}} 0 ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.52-3.55(4 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 4.22(2 \mathrm{H}$, d, $J=3.96 \mathrm{~Hz}), 4.47-4.58(8 \mathrm{H}, \mathrm{m}), 7.29(20 \mathrm{H}, \mathrm{s}) ;$ IR $(\mathrm{NaCl}$, neat $)$

3030-3090, 2860-2920, 1500, 1450, 1360, 1270, 1200, 1110, 1090, 1020, $725,690 \mathrm{~cm}^{-1}$; MS m/z $523\left(\mathrm{M}^{+}-1,0.1\right), 433(1.2), 341(1.6), 271$ (2.5), 107 (84.4). Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}$.

1-(3-Methoxy- $\mathbf{1}^{\prime}(\boldsymbol{Z})$-propenyl)-2,3,5-tri- O-benzyl- β-d-ribose. From $250 \mathrm{mg}(0.53 \mathrm{mM})$ of $\beta-17 \mathrm{c}, 225 \mathrm{mg}$ of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $63 \mu \mathrm{~L}$ of quinoline, $190 \mathrm{mg}(75.6 \%)$ of the Z olefin was obtained: $[\alpha]^{2 s}{ }_{\mathrm{D}}$ $+25.12^{\circ}\left(c^{0} 0.605, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.30$ $(3 \mathrm{H}, \mathrm{s}), 3.49(2 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and 6.7 Hz$)$, 3.91 ($1 \mathrm{H}, \mathrm{dd}, J=3.8$ and 5.1 Hz), $4.05-4.11(1 \mathrm{H}, \mathrm{m}), 4.17-4.23$ (1 $\mathrm{H}, \mathrm{m}), 4.44-4.62(7 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 5.52-5.57(1 \mathrm{H}$, m), 5.70-5.75 ($1 \mathrm{H}, \mathrm{m}$), 7.24-7.31 ($15 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) 3040-3100, 2870-2920, 1605, 1590, 1500, 1460, 1400, 1360, 1325, 1305, $1250,1210,1190,1110,1085,1050,1028,950,910,810,730,692 \mathrm{~cm}^{-1}$. From $180 \mathrm{mg}(0.28 \mathrm{mM})$ of the Z olefin obtained above, $84 \mu \mathrm{~L}$ (1.14 mM) of diemthyl sulfide, and $144 \mathrm{mg}(3.8 \mathrm{mM})$ of sodium borohydride, $92.1 \mathrm{mg}(55.8 \%)$ of the β-hydroxymethyl derivative was obtained. This material was identical with that obtained from $\beta-17 a$ and could be converted similarly to meso- 18 .

1-(1-Phenyl-2(\boldsymbol{Z})-ethylene)-2,3,5-tri- \boldsymbol{O}-benzyl- α-D-ribose. From 40 $\mathrm{mg}(0.079 \mathrm{mM})$ of $\alpha-17 \mathrm{a}, 34 \mathrm{mg}$ of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $10 \mu \mathrm{~L}$ of quinoline, $26.1 \mathrm{mg}(66.1 \%)$ of the Z olefin was obtained: $[\alpha]^{2 s} \mathrm{D}+28.37^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, vs TMS) $\delta 3.52(1 \mathrm{H}, 1 / 2$ AB q, $J=10.5 \mathrm{~Hz}), 3.65(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=10.5 \mathrm{~Hz}$), $4.04-4.11(2$ $\mathrm{H}, \mathrm{m}), 4.31-4.70(7 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{dd}, J=3.8$ and 9.2 Hz$), 6.12(1$ $\mathrm{H}, \mathrm{t}, J=10.5 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 7.18-7.35(20 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3030-3080,2860-2920,1605,1585,1495,1350,1310$, $1260,1200,1140,1110,1080,1040,1025,910,800,725,690 \mathrm{~cm}^{-1}$. From $35 \mathrm{mg}(0.069 \mathrm{mM})$ of the Z olefin obtained above, $15.3 \mu \mathrm{~L}(0.21$ mM) of dimethyl sulfide, and $26 \mathrm{mg}(0.69 \mathrm{mM})$ of sodium borohydride, 11.6 mg (38.9%) of the α-hydroxymethyl derivative was obtained. This material was identical with that obtained from $\alpha-17 \mathrm{~b}$ and was converted into 19.
α-1-(3-Methoxy-1(Z)-propenyl)-2,3,5-tri- O-benzyl- α-D-ribose. From $130 \mathrm{mg}(0.275 \mathrm{mM})$ of $\alpha-17 \mathrm{c}$ (α-anomer), 118 mg of $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$, and $32 \mu \mathrm{~L}$ of quinoline, $89.7 \mathrm{mg}(68.8 \%)$ of the Z olefin was obtained; $[\alpha]^{2 S}{ }_{\mathrm{D}}+18.7^{\circ}\left(c 1.42, \mathrm{CHCl}_{3}\right)$. This material was directly subjected to the ozonolysis/reduction/alkylation to 19. From $60 \mathrm{mg}(0.127 \mathrm{mM})$ of the Z olefin obtained above, $28 \mu \mathrm{~L}(0.38 \mathrm{mM})$ of dimethylsulfide, and $48 \mathrm{mg}(1.27 \mathrm{mM})$ of sodium borohydride, 25 mg (45.4%) of the α-hydroxymethyl derivative was obtained. This material was identical with that obtained from $\alpha-17 \mathrm{~b}$ and could be converted into 19.

Acknowledgment. We thank the National Science Foundation (Grant CHE 841 2055) for support of this work.

[^0]: ${ }^{+}$Fellow of the Alfred P. Sloan Foundation 1986-1988. NIH Research Career Development Awardee 1984-1989. Eli Lilly Grantee 1986-1988.

